
12
th

 International LS-DYNA
®
 Users Conference Computing Technologies(1)

 1

A Tutorial on How to Use Implicit LS-DYNA
®

Roger Grimes
Livermore Software Technology Corporation

Abstract

This talk will focus on the issues of using the Implicit features of LS-DYNA. Implicit has a

profoundly different footprint regarding the computational resources required than an explicit

simulation. This talk will especially focus on the management of those computational resources,

especially for distributed memory computations. This talk will also include an overview of

techniques for debugging models for use by Implicit.

Understanding the Computational Environment

Implicit has a fundamentally different set of computational requirements than the standard

explicit computational approach in LS-DYNA. This difference is due to the requirement of

assembling and solving the underlying linear system K * u = f for the displacements u. To best

use Implicit LS-DYNA on your computational environment it is best to start with understanding

your computational environment. This paper will assume that you are using a distributed

memory computational cluster and are using the MPP Hybrid executable of LS-DYNA. But

most of the discussion will apply to the non-hybrid MPP executable and the SMP executable.

Furthermore we will assume that the computation is being performed with the double precision

version of LS-DYNA and all storage for integer and real numbers is 8 bytes.

Most large scale LS-DYNA modeling is being performed on distributed memory computational

clusters. These clusters are made up of some number of computational nodes which are usually

similar in make-up. A computational node will have some number of sockets each holding some

number of cores (aka cpus), the product is the maximum number of processes for a compute

node; some amount of RAM (memory); and a local I/O system. A user needs to know the

number associated with these resources to properly manage them to get the best performance for

LS-DYNA Implicit.

The user also needs to understand that the MPP LS-DYNA executable can be spread across the

computational nodes using a round robin assignment to have the same number of processes per

computational node. For this paper the total number of processes is P. The number of processes

that will execute on a single computational node is Pl which should be limited by the number of

cores on that compute node.

Memory Management

Past experience with LS-DYNA Implicit has shown that the amount of memory available to each

MPP processes should be at least (440/P + 75)*N words where P is the total number of processes

and N is global number of nodes in the model.

Computing Technologies(1) 12
th

 International LS-DYNA
®
 Users Conference

2

This memory requirement has a serial memory restriction that is a limiting factor. This is an

algorithmic issue associated with the use of direct sparse linear equations solution technology

and affects every implicit finite element software package. LSTC is actively researching and

developing a new linear algebra technology to avoid this serial memory restriction. Until that

technology is available this serial memory restriction will be a limiting factor in implicit. And

memory per computational node will be the restriction.

Remember that the memory on a computational node not only has to hold the LS-DYNA work

array whose length is given by the memory=xxxxM on the command line but also dynamic

memory for MPP core utilities including Metis, the matrix assembly package and the LS-DYNA

executable. It is recommended that the memory setting on the LS-DYNA command line uses no

more than 75% of the memory available to that process. The authors always use the following

memory specifications on 16 and 48 Gbytes per node clusters

16 Gbytes 48 Gbytes

Pl
Memory Pl

Memory

1 1500M 1 4000M

2 800M 2 2000M

4 400M 4 1000M

8 200M 8 500M

You can get these recommended specifications by first dividing the amount of memory for a

computational node by 8 (to convert from bytes to words), multiplying by 0.75, and then

dividing by Pl, the number of processes running on a single compute node.

It is strongly recommended that user does NOT use the memory2 specification. The imbalance

of memory between processes will cause an imbalance in the intensive computation during the

linear algebra phase. It is also strongly recommended that the user does NOT use the

AUTOMEMORY feature. AUTOMEMORY tells LS-DYNA just to allocate all of the memory

it wants to. Implicit linear algebra needs to know how much memory it can use and when to

switch to using disk for alternate storage.

Now the user has to do some work. They have to know the amount of available memory (MEM)

and the global number of nodes in their model (N). They need to find the smallest P and Pl such

that (440/P+75)*N < (0.75*MEM/8)/Pl. The easiest approach is to start with 1 process per

computational node (Pl = 1). Then select a small number such as 8 for P. This choice of Pl

keeps all of the available memory intact for the LS-DYNA executable to overcome the serial

memory bottleneck.

To recover the computational power of each computational node it is recommended that you use

the MPP Hybrid executable for LS-DYNA. This executable uses the MPI distributed memory

computational paradigm for the processes, P, and then uses shared memory parallelism within

the MPI process to recover the otherwise idle computational power of the hardware. For a

computational node with 8 cores and only one MPI process for that computational node then use

ncpu=+/-8 on the command line to have, as appropriate, up to 8 SMP threads operating in the

12
th

 International LS-DYNA
®
 Users Conference Computing Technologies(1)

 3

context of that MPI process. If two MPI processes are running on that computational node use

ncpu=+/-4.

Once you get the first execution to run then the user can try to reduce computational time by

experimenting with process assignment. One can increase the number of processes per

computational node, Pl, and correspondingly reducing the number of SMP threads. Of course,

another approach is to increase P, the number of computational nodes utilized. But before that

experiment the user should understand how memory is being used and what are the options for

increasing P and Pl. During this experimental phase the user can reduce the computational time

for the overall simulation by restricting the simulation to a single time step and, perhaps,

restricting the job to a linear simulation with setting NSOLVR=1 (first field of

*CONTROL_IMPLICIT_SOLUTION).

Understanding the Utilization of Memory

LS-DYNA Implicit provides information about how memory is being used, especially when

LPRINT=2 (2
nd

 field of *CONTROL_IMPLICIT_SOLVER) is utilized, to the mesxxxx files.

Usually perusal of file mes0000 is sufficient although the user should check all of these files.

To begin with Implicit declares the start and end of static memory allocation for the non-linear

algebra storage for implicit from the LS-DYNA work array with the output to the file mesxxxx

file of

Start of implicit storage allocation – locend = 293181565

and

End of implicit storage allocation – locend = 2708332159

This is the storage required for implicit, especially for the nonlinear solution process. It is

allocated after explicit has finished allocating storage and prior to the start of the linear algebra

requirements.

The next phase of Implicit that affects memory is the assembly of constraints, the assembly of

the stiffness matrix, and the application of the constraints to the stiffness matrix. This is

performed by a collection of software called LCPACK (Linear Constraint Package). This is

performed using dynamic memory. Dynamic memory is allocated from some of the 25% of

RAM not allocated to static memory with the memory= specification.

When this phase is completed the matrix is extracted into static memory. You will see this

message for the expansion of static memory to hold the matrix data.

 expanding memory to 2838019839 implicit matrix storage

At this point the linear equation solution phase starts with the first step being the symbolic

processing. This is where the serial memory bottleneck for the symbolic processing will show

up. Look for this block of output

Computing Technologies(1) 12
th

 International LS-DYNA
®
 Users Conference

4

ptr to start of wrkspc = 2838019839

and later

storage currently in use = 94316328

storage needed = 1011902889

factor speedup = 7.5168E+00

solve speedup = 7.6665E+00

The value of the memory pointer (ptr above) should be very close to the end of the implicit

storage as the matrix storage is reused by the linear equation solver. The value for the pointer

plus the amount for storage needed is the serial memory bottleneck for symbolic processing, here

3.85 Gwords. If this amount is more than the specification of memory on the command line the

job will fail. If this amount is near the command line specification then the user cannot increase

the number of processes per computational node nor decrease the amount of memory per

process. If this amount is half of the command line specification then it is possible to double the

number of processes per computational node, Pl, and correspondingly reduce the memory

specification and number of SMP threads (ncpu). On this run, using a computer with 96 Gbytes

and memory=8000M the required memory is less than half so it would be possible to increase Pl

from 1 to 2. As we see later this may or may not be a good idea.

The symbolic processing examines the computational structure resulting from the symbolic

processing and determines the amount of distributed memory parallel speed-up is available. This

computation is limited to the actual number of processes being used for this run. If the speed-up

number for the factorization is much smaller than the number of processes being used then the

user should not increase the number of processes. All of the available performance gain has

probably been achieved.

During the process of solving the system of linear equations there will be output of the form
in-core numerical storg 1 = 159821.76 Mw

out-of-core num. storg 1 = 10936.73 Mw

expanding memory to 8000000000 linear eqn. solver

With P = 8 and Pl = 1 and memory=8000M this job failed because there was not enough memory

for an out-of-core factorization. So the first step is to increase P to get the out-of-core storage

below 8000M. Of course, you can always request a memory increase for your computer. Like

that is going to work.

If the memory expansion is less than the in-core required storage the factorization will be stored

on disk. This will tend to increase the overall computational time. Storage of the factorization

on disk may well be required to get the problem solved. Increasing the number of processes per

computational node may cause a factorization that was stored in memory to be stored on disk.

This will probably cause a degradation of performance.

12
th

 International LS-DYNA
®
 Users Conference Computing Technologies(1)

 5

If the factorization is in memory and only half of the static memory is being used then the user

can probably double the number of processes per computational node, Pl, and correspondingly

decrease both the specification for memory and ncpu.

If the factorization is out-of-core (as many large simulations will be) it is best if the factorization

is stored on the file system local to the compute nodes. It is almost never a good idea to use

central file systems for these scratch files. Include in p=pfile the line

dir { local /my/local/disk/tmp rmlocal transfer_files transfer_scr }

Model Debugging

After memory management the most difficult part of using Implicit is debugging the actual

model. Due to the requirement of solving the system of linear equations the stiffness matrix,

after constraints have been applied, has to be non-singular. Over the years LSTC has added a

number of automatic responses to removing such things as nodes with no stiffness and many

types of redundant constraints. Alas, like the Maginot Line, innovative users can easily get past

these defense mechanisms.

Two debugging tools are immediately available to the users. The first is setting LPRINT=3.

This activates extra checking of each and every elemental stiffness matrix. Elemental stiffness

matrices with negative eigenvalues, too many zero eigenvalues, and not enough positive

eigenvalues are all flagged. If the user sees these warnings they should examine the associated

elemental and material definitions.

The most powerful tool is the eigenvalue computations. Inserting

*CONTROL_IMPLICIT_EIGENVALUE

10

activates the eigenvalue computation which provides a very powerful tool. If rigid body modes

are found they need to be removed from the model or a feature such as Implicit Dynamics or

Inertia Relief should be used to remove them. A common problem is parts of the model that are

not connected to the rest of the model due to a missing contact definition or constraint.

In some cases, the number of rigid body modes is so large the eigensolver fails. Look for the

first occurrence of

Shift (in cycles) : 8.8037D-04

No. modes to left : 223

This indicates that there are 223 modes to the left of 8.8037D-4. This indicates a huge cluster of

eigenvalues at zero. The eigensolver will not be able to resolve this huge cluster to determine the

smallest 10. A common cause of this huge cluster of eigenvalues is the inclusion of elements or

parts not tied to the rest of the model. The author saw one test case with 120 beam elements that

were not connected with the rest of the model. This added 720 near zero eigenvalues. With the

removal of the spurious beam elements the model ran just fine.

Computing Technologies(1) 12
th

 International LS-DYNA
®
 Users Conference

6

Another common cause of a huge cluster of zero eigenvalues is the common practice of

wrapping a solid part with shell elements. This is usually to get surface stresses but sometimes is

used for the purposes of contact definitions. Such shell elements tend to be very thin to add very

little mass or stiffness to the model. So a common shell element would have no stiffness for the

rotational dofs that are not present with the solid elements. This adds 3 near zero eigenvalues for

each node attached to the shell elements. So it is required that these very thin shell elements use

the membrane element formulation so as NOT to add the unnecessary rotational dofs.

Another aspect of the debug checking activated with LPRINT=3 is a linear algebra based

examination of the stiffness matrix looking for separability. Due to algorithmic restrictions this

is only available for the SMP version. This is the property that the overall stiffness matrix is

actually made up of more than 1 independent problems or components. The user could use the

SMP just to check for separable components if the MPP eigensolver fails. If the problem is

separable it is almost always coupled with elements and parts not attached to the rest of the

model. A report is generated on these components. Search the messag file for

 This implicit model has separable components
 this may lead to model singularities

 Number of components = 8873

 the first few smallest 6 components

 the list is limited to at most 100 rows for each component

 Component size node dof

 --------- ---- ---- ---

 1 72 220427 x-t

 220427 y-t

 220427 z-t

This says that the first (sorted by size) has 72 dofs in the component including the x-t, y-t, and z-t

dofs for node 220427. The report lists the nodal information for the smallest components. This

is another approach for finding parts that are not connected to the remainder of the model that

would be causing singularities.

The linear algebra software will track the numerical stability of the numerical factorization of the

stiffness matrix. If you see

 *** Warning: At least one small pivot detected during factorization

then you probably have a near singular matrix. It is recommend that you compute the near zero

eigenvalues as discussed above. It may be that the singularity develops during the simulation.

One could consider using the intermittent eigenvalue feature to compute the eigenvalues at the

simulation time where the warning appears.

Another technique is to dump the nonlinear search directions to the d3iter database. You can

then use LSPrePost to examine the search directions. If the search direction is going off in a

strange direction it is probably due to a singularity in that direction. You can turn on the output

to the d3iter database using D3ITCTL, the 6
th

 field on the 2
nd

 line of

*CONTROL_IMPLICIT_SOLUTION.

12
th

 International LS-DYNA
®
 Users Conference Computing Technologies(1)

 7

A Parthian Shot

Implicit prefers modeling with constraints rather than the penalty treatment. For robust solution

of the implicit problems it is recommended that all use of

*CONTACT_TIED_xxxxxx_OFFSET

or

*CONTACT_TIED_xxxxxx_BEAM_OFFSET

is switched to

*CONTACT_TIED_xxxxxx_CONSTRAINED_OFFSET.

Computing Technologies(1) 12
th

 International LS-DYNA
®
 Users Conference

8

